
Building a Fast
Universal Data
Access Platform
Christopher Gardner

REPORT

Compliments of

�����������
�����������������������������������
����������
����	������������������������������

���������
��	������������������������������	����������
���������������������

�����
���
���
�����������

���������
���
��
�������������������������������

����
���
������������������������������������
�����������	����������	�������������������������
����������

	�
����������������������	��	�����������������
������������������������� ��������������
������������������������������

���
��
������	���������������������������������������
��

������
��
��
�����������������������������

�������������������
�������������
�	���
��������������������

RapidsDB

��� ����������������

������������������������������

������������������� ���������������������� ����������� ����������� ����������� ����������� �������

https://www.rapidsdb.com

Christopher Gardner

Building a Fast Universal
Data Access Platform

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-15532-2

[LSI]

Building a Fast Universal Data Access Platform
by Christopher Gardner

Copyright © 2023 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisition Editor: Aaron Black
Development Editor: Gary O’Brien
Production Editor: Beth Kelly
Copyeditor: Audrey Doyle

Proofreader: Brandon Hashemi
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

August 2023: First Edition

Revision History for the First Edition
2023-08-23: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building a Fast
Universal Data Access Platform, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and RapidsDB. See our state‐
ment of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. Challenges of Universal Data Access. 1
What Is Universal Data Access? 1
Data Diversity 4
Data Volume 5
Speed of Analytic Operations 6

2. Building a Framework for Data Diversity and Universal Access. . . 9
Federated Query System 9
Pluggable Data Connectors 10
Support for Cloud, Hybrid Cloud, and On-Premises

Deployments 11
User-Defined Types and Functions 11

3. Meeting the Performance SLAs for Making Business-Critical
Decisions. 13
Dynamic Clustering 13
Dynamic Query Optimization 14
Minimizing Data Movement Using Intelligent Query

Pushdown 17
Execution at Machine-Code Speed 20
In-Memory Data Processing 21

4. Requirements Summary. 23
Case Study 24

v

CHAPTER 1

Challenges of Universal
Data Access

Your company relies on data to succeed. Traditionally, this data
came from the business’s transactional processes. It was pulled from
the transaction systems through an extract, transform, load (ETL)
process and into a warehouse for reporting purposes. With the
growth of the Internet of Things (IoT), web commerce, and cyber‐
security, this traditional data flow no longer suffices. The copious
and diverse data available to your company brings challenges with
connections, speed, volume, and access. How do you ensure that
your company can keep up with today’s increasing magnitude of
data and insights so that it will be a leader in the field in the future?

What Is Universal Data Access?
The main problems facing businesses today are the volume and
variety of data accessible for analysis. It is no longer viable to simply
examine the data generated by business processes. Instead, many
organizations are starting to look outside their business workflow
for information on customer behavior, retail patterns, and industry
trends. This supplemental data provides actionable insights, but it
also creates a challenge when integrating with business-specific data
sources.

Your organization likely generates data and stores it within a single
platform. Your daily processes create data as part of normal business
flow, and this data is likely stored in a transactional database similar

1

to that shown in Figure 1-1. From this, the data is translated and
transformed into a separate structure, such as a warehouse, where it
can be reported more easily. But what happens when data is needed
from an external source, such as web analytics, census demograph‐
ics, or elsewhere? How do you integrate data sources of differing
structure, design, or format? How do you ensure peak query perfor‐
mance to provide insights in near-real time?

Figure 1-1. Traditional data flow from transactional processes to ana‐
lytic insights

External data sources are vital to the success of your organization.
The challenge lies in how to accurately and efficiently bring all this
data together into a usable format. In Figure 1-2, you can see how
these additional data sources impact data flow. As many of these
sources reside outside your business’s transactional process, many
are in different formats and structures. Some of them may be in
relational databases while others may be in NoSQL databases, flat
files or streams. You need special reporting tools to combine this
data into a streamlined, usable source.

Figure 1-2. Data flow illustrating the gap caused by extracting data
from external sources

2 | Chapter 1: Challenges of Universal Data Access

The process of combining all these different data sources, formats,
and structures is what we refer to in this report as universal data
access. In short, a framework is developed to pull data from multiple
sources and combine the data sets into a single schema of query‐
able views similar to that shown in Figure 1-3. Ideally, this new
framework would be dynamic, be easy to access, and rely on the
infrastructure of its sources to provide the speed and power needed
to make the data accessible in a timely fashion. In truth, however,
many of today’s applications sacrifice speed for data diversity or vice
versa.

Figure 1-3. Data flow from transactional processes and external sour‐
ces to an integration or federation tool, consolidating both into a single
format

Two of the most well-known software tools to move forward with
universal data access are Denodo and Presto. While each is powerful
in its own right, they both have drawbacks. Denodo is extremely
diverse, providing a huge variety of connectors and allowing users
to pull from many different data sources; however, it lacks the per‐
formance needed to combine these sources and provide ad hoc
queries. Presto is more adept at handling ad hoc queries, but it lacks
the diversity of connection types. Let’s take a deeper look at the
areas of data diversity and data volume, as they dictate the success of
combining external and internal data sources.

What Is Universal Data Access? | 3

Data Diversity
Data within an organization is easier to collect and combine into
a single format and data structure, but what happens when data is
needed from sources the organization does not control? How do you
deal with data that is dynamic, unstructured, or even residing in an
entirely different database structure than your organization?

To answer these questions, first we’ll examine why external data is
relevant to your business. Take, for example, a retailer. A business
such as this would need data related to operations such as supply
costs, inventory, product demand, and operating costs (employee
pay, utilities, etc.). What happens if we look one step beyond the
business itself? A retailer can improve sales by utilizing web data to
understand customer habits and trends. It can improve marketing
by identifying customer demographics and regional tendencies. It
could improve transportation costs by comparing delivery services.
In fact, huge amounts of data are available to any business beyond
its operating core that can improve the bottom line.

This leads to the first issue with data diversity. Traditional data
is organized and structured, usually in a centralized database with
fixed tables, fields, and data formats. This makes the data easy to
store, manipulate, and analyze. Data doesn’t just come in strings,
integers, or floating decimal values, though. Photos, audio, video,
arrays, and many other new types of data are now becoming main‐
stream, and traditional data structures are not designed to handle
these new formats. Your business needs definitions and functional‐
ity to assist with storing and analyzing these data types.

This issue is not limited to the format of the sources, either. Many
other obstacles come into play. First, the data needs to be extracted
from its source and pulled into a repository where it can be com‐
bined with other data. This process requires transferring the data
over networks, translating data fields, and establishing an architec‐
ture that will provide accurate and usable data. All of this takes
time, which builds in a level of latency from when the data becomes
available in its source system to when it is accessible for reporting
within your organization. As we’ll see later, data speed is imperative
in making timely business decisions.

The second issue with data diversity is data quality and integrity.
Adding new data to an already existing system creates potential

4 | Chapter 1: Challenges of Universal Data Access

challenges. For example, pulling data can sometimes result in dupli‐
cate data or incorrect field formats. There are also challenges with
changes in the source system impacting the data pull or transfor‐
mation. This obstacle requires constant monitoring and testing to
ensure data quality throughout.

The third issue is security. Data integration makes copies of source
systems in another location. Pulling data from external sources may
result in additional security needs, especially if that data contains
sensitive or private information. Some examples of data that may
have potential security issues include protected health data, credit
card data, and Social Security numbers. You need to be prepared to
handle increased security needs if you use data integration to pull in
external data sources with sensitive information.

The final issue with data diversity is adaptability. Data sources will
continue to adapt and change. Your company’s needs will change as
well. Unfortunately, many systems designed to pull in disparate data
are not easily adaptable. What happens when your data federation
or data integration system does not adapt to a new data source that
is imperative to the operation of your business?

All these obstacles combine to create challenges when bringing
together varieties of data for reporting. A platform is needed to
bring this wide variety of data into a single usable format. Two pro‐
cesses that combine disparate data sources are data federation and
data integration. These processes are accomplished with software
that allows multiple varieties and structures of data to be combined
and function under a single source. For now, it is enough to under‐
stand what the software does. Later in this guide, we will discuss the
differences between data integration and data federation as well as
evaluate the advantages and disadvantages of each.

Data diversity is not your company’s only obstacle as it searches for
new and valuable insights. Organizations also face the challenges of
data volume.

Data Volume
Consider your existing data structure within your company. How
many different tables exist? How many years’ worth of data is avail‐
able? What happens when more and more data is added as your
company continues to do business year after year? Are you able

Data Volume | 5

to dynamically add new data types or data sources? As more time
passes, additional data is collected, meaning the data stores are dra‐
matically increasing in size. How does your company handle this?
What happens when more data is required to do effective predictive
and prescriptive analysis for your company?

This brings us to the second-biggest hurdle when it comes to data
volume: data processing. Even if you have a large-volume cloud
storage option for your data, it still takes time to organize, structure,
load, and analyze that stored data. Once the data is loaded, it may
still need to be evaluated for quality and integrity. The large volumes
of data many companies deal with create obstacles to finding errors
or inaccuracies.

There are several vendors in the data storage space and many new
methods are emerging to improve data organization, indexing, and
performance. Hadoop and Apache Spark are two examples of data‐
bases designed for large-volume storage and access. Even these stor‐
age structures have issues, though, as they must be able to handle
existing data while being extendable to handle future demand. Still,
the flexibility and adaptability of cloud storage has led many compa‐
nies to turn away from storing data in large server banks locally.

Regardless of what tools you use or where you store your data, the
biggest hurdle when it comes to data volume is speed. Decisions
are made much more effectively when they happen closer to when
transactions occur. Parsing, loading, and analyzing large volumes of
data take time, which creates the potential for latency. Things like
network speed, server resources, and usage volume can all impact
the performance of queries against data sources. Knowing this, let’s
look at why speed is valuable to your business and what obstacles
exist with generating near-real-time insights.

Speed of Analytic Operations
Why are rapid insights so valuable to your organization? With
increased online commerce, speed is more important than ever.
Faster analytics can improve your business in the following ways:

Improved customer experience
By examining browsing habits and historical purchases, com‐
panies can provide their customers with customized experien‐
ces in near-real time. These improved experiences improve

6 | Chapter 1: Challenges of Universal Data Access

customer interactions and increase the likelihood of successful
transactions.

Utilizing customer demographics
Information about customers is key to improving sales. Demo‐
graphic and regional data provides the tools necessary to gener‐
ate marketing efforts specific to gender, race, or age groups as
well as customers from specific regions within your service area.

Maximizing operational efficiency
Real-time information on how your company is performing is
vital to success. This includes data from transactional sources
that allow you to identify where business processes are lagging.
Such data may also come from external sources such as suppli‐
ers or shipping providers. Access to this data not only allows
you to identify what is inefficient, but also helps you preempt
potential challenges in the future.

Identifying and preventing data threats
Network and security threats are becoming more and more
frequent in the business world. Real-time threat assessment and
mitigation is imperative to ensuring that your company and
customer information is secure, safe, and private.

Improving competitive advantage
Tracking pricing trends can benefit your business by providing
near-real-time information on competitor pricing, customer
feedback, and sales analysis. This data can then be used to
adjust prices dynamically, ensuring that your business remains
competitive in the market.

In each of these examples, latency is an obstacle to valuable insights.
Your company needs to adapt as quickly as possible to the business
landscape to attract and keep customers, produce products or serv‐
ices more efficiently, and identify network and security threats as
quickly as possible. So how do you overcome the latency that can be
inherent in large amounts of data from diverse sources?

There are multiple approaches to improving data speed. The first
is to throw resources at the problem. Many companies adopt this
method to ensure that critical processes continue to run as more
and more resources are needed. In short, if the memory, processor,
or storage is insufficient to meet the needs of the data, simply add
more. While this works in many cases, there are limitations to how

Speed of Analytic Operations | 7

many of these things can be added to manage the data. Additionally,
this method significantly increases the cost of maintaining the data.
Additional hardware requires additional processing power, storage
space, and human resources to maintain it all.

Speed can also be improved by converting the data into a unified
format. As mentioned before, data integration and data federation
will combine multiple varieties of data sources to provide a single
unified data source. This allows data analysts, data scientists, and
report writers to analyze a single source rather than face the chal‐
lenges associated with disparate data sources. Ultimately, a unified
data format improves the speed to gaining insights, providing time
for analysis rather than spending time figuring out a blend.

There are other ways to improve speed as well. Indexing is a
common solution that improves speed by creating a directory of
where certain information is housed. This improves query times by
pre-identifying where to look for the requested information. To be
effective, indexing needs to happen regularly, as data and sources
change.

Certain database management systems (DBMSs) are also effective
in improving query performance against data sources. Columnar
database management systems such as Amazon Redshift and Google
Cloud convert row-based data into a columnar format, allowing
for faster indexing and data retrieval as data can be searched for
within a specific column rather than searching through every row.
Unfortunately, columnar databases are far more difficult to load
than row-based databases due to their structure.

There are numerous reasons to improve speed, but the data sources
that provide the necessary data to achieve these results are large in
size, are varied in format, and require complex queries to generate
valuable insights. Which methods are most effective for adapting
to large and diverse data sets? How does your company overcome
these obstacles to ensure that the data needed for insights is not only
accurate and accessible but also timely?

8 | Chapter 1: Challenges of Universal Data Access

CHAPTER 2

Building a Framework for Data
Diversity and Universal Access

We’ve established three primary goals for our data ecosystem. First,
we need it to handle data of varying types and sources while also
being able to rapidly adapt as new sources become available. Second,
we need to be able to handle large quantities of data. Our solution
needs to be large enough to handle all our existing data and flexible
enough to expand as more data gets added. Finally, we need our sol‐
ution to be able to return queries as quickly as possible to give our
business the ability to get rapid insights. Knowing these challenges,
what are the solutions that will help us achieve our goals?

Federated Query System
The underlying goal of pulling in larger volumes and varieties of
data is to create insights from multiple combinations of sources,
expanding your knowledge of how your company runs and identi‐
fying ways to improve. The challenge is that many of these data
sources require different connection types, languages, or even trans‐
lations to make them usable. A federated query system does that
work behind the scenes and provides a single point of connection
for users attempting to utilize the data.

Federated query systems resolve the challenges of diverse data.
Using an overlying system to connect to diverse data sources sol‐
ves many data storage and reporting challenges. The most obvious
problem this solves is the need for multiple drivers, multiple logins,

9

and complex blends associated with connecting to different types of
data. It also eliminates some of the need for data knowledge, as end
users no longer have to know which data source has which data.

It is important to point out that data federation and data integration
are not the same thing. Data integration pulls data from multiple
sources and replicates it in a single, unified format for querying.
Data federation does not duplicate the data. Rather, it provides a
data model that connects to the disparate data sources, allowing
you to query them directly through a single source, similar to the
structure shown in Figure 2-1. It also means end users only need to
be familiar with one type of query language.

Figure 2-1. Example layering of data federation tools to provide
reporting applications access to data in multiple formats

A federated system can also address the issue of security. Unlike
data integration systems, data federation does not require data repli‐
cation. This means security can be passed from the source systems
to the end user rather than relying on a separate set of security for
the replicated version.

Pluggable Data Connectors
The framework being developed across multiple data sources also
needs to be flexible enough to expand and adapt to changes in
business requirements. Take, for example, a business that adopts a
web-based retail interface. In addition to traditional sales data, the
business needs to examine the success of the online storefront. This
may include data such as page clicks, time on pages, and resulting
sales. More than likely, this data will not be in the same format as
that from a traditional brick-and-mortar store. It may be a different

10 | Chapter 2: Building a Framework for Data Diversity and Universal Access

database, in a different format, and of different granularity than
what has been tracked and recorded previously.

This company needs a system that will adapt to the online change,
and universal access allows this to happen. Instead of connecting
separately to online data and trying to determine how to blend it
with existing data, the online data is added to the federated data
system with the addition of a simple connector. The users don’t need
to learn how to query web data; instead, they continue to use the
federated query system to pull both online and local sales data.

Data connectors eliminate the need for additional logins, query
languages, security, and more. Plugging in data connectors allows
your business to adapt and change as data requirements shift. This
means adaptability and scalability. It also means your system can
handle new data types through user-defined types and functions,
which we will discuss later.

Additionally, these connectors can independently adapt to the
source system. If our fictional retail business is pulling web data
and that web source suddenly changes, only the connector needs
to be adjusted. The system can also adapt by adding additional
connectors.

Support for Cloud, Hybrid Cloud, and
On-Premises Deployments
Since the framework is able to connect to multiple sources and file
types, there are no restrictions for where it is hosted. It could be on
premises, on the cloud, or both. As long as the system has the means
to access the data, it can be hosted in a variety of environments. This
adaptability also addresses the second portion of our requirements:
the capability to handle large and growing data sets.

A data federation system can connect to multiple data sources, file
types, and structures, but once it does, it needs a place to store the
resulting data. Data federation does this virtually.

User-Defined Types and Functions
It’s very likely that your company utilizes common types of data. In
most traditional systems, these would be data types such as integers,
floating decimal values, strings, booleans, and dates. A federated

User-Defined Types and Functions | 11

system should be able to handle these types of data easily, but what
happens when your data systems become more complex due to
adding new data sources or changing your functional business?
What happens when your company needs new data types such as
URLs, geographic coordinates, or images? A federated system needs
to be able to quickly adapt to new structures as well as the require‐
ments and rules that govern how they can be used.

The following example illustrates this idea perfectly. Think of an
integer data type. It has specific requirements such as being numeric
and being a whole number (no decimal places). It can also be
interacted with in specific ways such as with MIN, MAX, SUM, and
AVG functions. The definition and the corresponding functions that
apply to this data type are standard, but what happens when new
data types arrive?

For a system to be truly dynamic, users need a way to define new
data types along with the functions that manipulate and interact
with them. A system that allows user-defined types and functions
can be extensible, flexible, and consistent. It allows for data types
that are otherwise not available within a traditional database, such
as images, movies, and more. These defined types and functions can
then be stored and reused via a connector with other data areas and
queries.

12 | Chapter 2: Building a Framework for Data Diversity and Universal Access

CHAPTER 3

Meeting the Performance SLAs for
Making Business-Critical Decisions

Pulling data from multiple sources is necessary to make effective
decisions about your business; however, these data sources are
not as useful if they cannot be queried and cannot return data
quickly—data delays result in missed opportunities and failure to
identify issues. So companies look for ways to increase the variety
and volume of data being used, as well as ways to improve the
performance of that data and return insights in speeds that are
closer to real time. Let’s look at some of the common methods for
improving database performance.

Dynamic Clustering
The first method for improving database performance is dynamic
clustering. In short, a central server acts as a delegator, shifting the
system’s demands across a bank of worker servers. This distributes
the query requests and data returns across multiple server nodes.
Each server in the cluster provides data on system performance.
This allows the workload manager to determine where to assign
requests dynamically as resources become available.

By distributing the query across multiple nodes, the system dis‐
tributes the workload across multiple servers, thus increasing the
processing power and memory devoted to query returns. Because
the clustering is dynamic, the delegating server can shift the work

13

among multiple nodes, ensuring that the queries processed are run
as efficiently as possible.

Dynamic clustering provides an additional benefit: redundancy. If
any cluster nodes go down, the remaining clusters are available to
pick up the load. This provides replication and prevents the down‐
time that would occur during a normal server outage, ensuring that
your company has reportable data quickly and reliably.

Clustering also allows your company to scale easily. If your busi‐
ness’s data demands change at any time, additional node clusters
can be rolled up to meet the increased need. Combining this with
a federated query system ensures that any new data can easily be
added, analyzed, and available for querying and reporting. It also
ensures that reporting happens in as near to real time as possible,
meaning that your data-driven insights are actionable and useful.

Dynamic Query Optimization
There are two different approaches to query optimization. The first
approach is static query optimization, whereby the SQL is submitted
to the system and an execution plan is created to generate the
results. With larger and more complex queries, static optimization
often lacks the necessary information about the tables being quer‐
ied. Additionally, the statistics about those tables might be inaccu‐
rate or lacking. The result is a query execution plan that is slow
or long running, delaying the valuable information needed from
the data. This issue is exacerbated when organizations look to add
nonrelational database connections to their analyses.

The second approach is referred to as dynamic query optimization.
The first step in this process is identical to that in static query
optimization. Once the initial execution plan is created, though, the
dynamic query optimization process continues during the course of
execution. The result is a query execution plan that is continuously
and dynamically updated as additional information about the quer‐
ied tables is discovered. In short, the dynamic query is able to adjust
the assumptions made by the initial execution plan to pull data
more efficiently and quickly.

To better understand this, let’s look at an example. Assume a
large query is submitted to a system with dynamic query optimiza‐
tion. Initially, the system has very little knowledge of the size or

14 | Chapter 3: Meeting the Performance SLAs for Making Business-Critical Decisions

cardinality of the data being queried. The optimizer does its best to
guess what will be the fastest way to process the query and return
results. As the query continues, however, information about the data
becomes available with regard to size and structure. The optimizer
can reevaluate performance based on these new pieces of informa‐
tion and improve the performance by shifting parts of the query
to other resources or recompiling during the process. Figure 3-1
depicts both approaches to query optimization.

Figure 3-1. Static query optimization (left) and dynamic query optimi‐
zation (right)

Dynamic queries continuously work to improve performance. The
results that are gathered, such as statistical information about tables,
cardinality, and size, can then be applied to future queries utilizing
these same table resources. The system also analyzes statistics on
query performance to see if the process meets thresholds or needs
to be reconfigured. This ensures that the queries are routinely upda‐
ted and verified to be the most efficient as the data changes and
updates. The system can run additional queries to improve perfor‐
mance during downtimes. Let’s dig further into query optimization
to understand why it’s so important.

Humans write queries from the perspective of requesting data from
specific places, joining it to other data, restricting it, and returning
the results. Logic from humans only provides the “what” of the
query, and it’s up to the optimizer to determine the “how.” Let’s
imagine a typical query with multiple joins and restrictions and use
it to understand how query optimization works and how data being
pulled can be run in multiple ways.

First, let’s set up our query. We will pull data from Table A and join
it with data from Tables B and C. We will restrict our results to only

Dynamic Query Optimization | 15

include values of y from Table A not equal to 5 and values of z from
Table C equal to 8, as shown in Figure 3-2. The query, as written in
SQL, would be something like this:

select sum(B.x)
from A, B, C
where A.k = B.k and B.k = C.k and A.y >< 5 and C.z = 8
group by B.g;

Figure 3-2. An example query consisting of data from Table A joined
to Tables B and C, with the values of y and z being restricted

In this query, there are multiple paths the optimizer can take to
return the results. Does it pull the data from A and then from B?
Does it pull it from A and then C? When do we restrict the results
for y and z? Assuming limited information about the tables was
available at execution, a static query optimization might perform the
join between Tables A and B, then join the results to Table C before
limiting the results based on y and z. This is not the most optimal
approach. Let’s examine how a dynamic query optimization process
might improve performance.

First, the dynamic query optimization process would examine the
query and build an execution plan. As the query starts running,
the optimizer will likely determine that less work needs to happen
if the rows being pulled are limited to begin with. Thus, it would
restrict the results from Table A by z and Table C by y before

16 | Chapter 3: Meeting the Performance SLAs for Making Business-Critical Decisions

doing any joins. This is called moving the predicate down in the
plan. Finally, as the query is running, the optimizer might realize
that Table A is very large and Table C is very small. It may then
determine that joining Tables A and C first before joining Table B
would improve performance. Information about tables such as size
and cardinality of the data from this query would then be recorded
for any future queries including Tables A and C. By acquiring infor‐
mation about the tables, moving the predicates down, and rearrang‐
ing the joins as shown in Figure 3-3, dynamic query optimization
improves the runtime performance of the query.

Figure 3-3. Query optimization rearranging the order of predicates and
joins to improve performance

Minimizing Data Movement Using Intelligent
Query Pushdown
A federated query system provides the ability to query multiple dif‐
ferent data sources as though they were one single source, but doing
so can be CPU, memory, and network intensive on the system doing
the federation. When large amounts of data need to be combined
across a variety of systems, additional steps are required to mitigate
the burden on the federated system where the query originated. This
is where intelligent query pushdown comes into play.

Minimizing Data Movement Using Intelligent Query Pushdown | 17

In a typical federated system, the federation server would retrieve
data from the various data sources and proceed to execute the query.
In this process, the resources of the federation server would be
used to collect and combine the multiple data sources as illustrated
in Figure 3-4. For example, a join between tables from separate
databases would first be pulled to the federation server, which would
then process the join.

Figure 3-4. In a typical federated system, the system itself executes each
query and returns the data from the source data systems

This idea of query pushdown is to push as much of the query
process as possible to the underlying data source servers. This not
only shifts some of the processor and memory demands to another
server, it also limits the amount of data being passed over the net‐
work. We mentioned an example of pushdown when we discussed
dynamic query optimization. Some federated systems will push the
query along with predicates down to the source server. Let’s return
to our previous example:

select sum(B.x)
from A, B, C
where A.k = B.k and B.k = C.k and A.y >< 5 and C.z = 8
group by B.g;

If we assume that Table C resides on an Oracle database, the federa‐
tion server can push that part of the overall query to the server on
which Table C resides:

select k
from C
where z=8;

This pushes the query processing to the Oracle server hosting Table
C. Once the Oracle server completes the query, it can then run
the predicate, which limits the amount of data returned across the
network to the federated server. This increases query performance

18 | Chapter 3: Meeting the Performance SLAs for Making Business-Critical Decisions

by distributing the workload and reducing the amount of data trans‐
ferred over the network, as illustrated in Figure 3-5.

Figure 3-5. Intelligent query pushdown shifts all or some of the query
process to the server hosting the data

Some solutions, such as RapidsDB, take this a step further by uti‐
lizing their connector-based approach to federation, where each
connector understands the capabilities of the data source for which
the connector is responsible. This is known as intelligent query push‐
down. With intelligent query pushdown, the federation server will
push down not only simple queries and predicates, but also complex
subqueries to be completed on the remote data source server.

Returning to the previous example, if Tables A and C resided on an
Oracle database, then the query:

select A.k
from C,A
where C.k = A.k and C.z=8 and A.y >< 5;

could be pushed down to the Oracle database server.

To support intelligent query pushdown, the system has to be able
to break down a query into a set of subqueries, each contained
completely within a single data source, and then decide which parts
of that subquery can be pushed down. Submitted queries that have
calls to functions only supported by that federation server would be
run on that federation server. Federation servers only push down
those parts of the subquery that could be executed by the data
source server. For example, assume the following query:

select fastest(x)
from A
where A.y > 8;

If the function fastest was not supported by the remote data
source, it would need to be handled by pushing down the query:

Minimizing Data Movement Using Intelligent Query Pushdown | 19

select x
from A
where y > 8;

The federated system would then apply the function fastest to the
data returned from the data source. This type of pushdown can
become very complex.

Execution at Machine-Code Speed
Queries are written with data in mind from the perspective of a
human being, but that perspective is not the fastest or most efficient
for machines relying on 1s and 0s. To make queries move even
faster, the logic needs to be shifted from a human language to a lan‐
guage that is faster for a computer to use and digest. That language
is machine code. If a query can be converted from the language it
was written in (such as SQL) to machine language, no level of code
interpretation needs to happen. The process of converting from SQL
to machine code is called compilation and is performed by compiler
software.

The benefits of this approach are twofold. First, executable pro‐
grams are able to fully utilize the processor and memory resources
within a server and are not restricted by the program hosting
the query. Second, the operating system has built-in capabilities
to improve executable performance, meaning the optimization can
continue to the level of the server. An example of such a compiler is
LLVM, which was started as a research project at the University of
Illinois.

Some companies take the optimization process a step further. For
example, RapidsDB relies on Java bytecode, which is then executed
by the Java Virtual Machine (JVM). The JVM has a just-in-time
compiler that analyzes the code and determines how to compile the
Java bytecode to provide the most efficient method of execution.
Each time it executes a chunk of code, it triggers a countdown.
When it reaches a predefined optimization level, the bytecode is
compiled into machine code. This means the more often a piece of
bytecode is run, the more likely it is to get compiled into machine
code. For RapidsDB, the engineers have determined the best way to
write Java bytecode such that the just-in-time compiler will compile
the bytecode into machine code to get the optimum performance.

20 | Chapter 3: Meeting the Performance SLAs for Making Business-Critical Decisions

https://llvm.org

In-Memory Data Processing
Traditionally, queries rely on disk accesses to pull data and analyze
the results; however, hosting the data in memory means the process‐
ing skips the disk read process and improves performance dramati‐
cally. In-memory systems store the data in RAM across a cluster of
servers, allowing them to process the data in parallel. By storing the
data in RAM and utilizing multiple servers, data can be processed
many times faster than traditional disk-storage databases.

Redis is an example of an in-memory data structure store. But while
Redis offers the performance improvement afforded by in-memory
data processing, that improved performance comes at the cost of
functionality. Redis only allows very simple queries and lacks the
ability to do joins or other, more complex data queries. It may
improve speed, but if it cannot meet business query needs, its use‐
fulness is limited.

These are several examples of how performance needs can be
addressed when working with the wider varieties and larger volumes
of data becoming available each day. What does our platform need
to accomplish to meet the needs of our changing data environment?

In-Memory Data Processing | 21

CHAPTER 4

Requirements Summary

A fast universal data access platform must meet the following organ‐
izational requirements:

• Handle a wide variety and ever-changing set of data.•
• Deal with huge amounts of data that continue to grow with•

time.
• Provide results to analytical queries as quickly as possible to•

allow organizations to do analysis and make data-driven deci‐
sions in as close to real time as possible.

• Be flexible enough to be on premises, in the cloud, or any•
combination of the two.

To meet these requirements, the platform needs to utilize multiple
components:

Federated query system
Allows the platform to connect to a wide variety of differ‐
ent data types and structures, and allows for structured and
unstructured data.

Pluggable data connectors
Give the flexibility to add additional connection types as data
sources change and update.

Multiple installation options including varying levels of cloud support
Ensure that the organization’s needs are met regardless of
whether the installation is on premises or in the cloud.

23

Dynamic clustering
Brings multiple worker nodes under a delegating authority to
provide additional power, speed, and redundancy.

Dynamic query optimization
Continuously improves the performance of queries to ensure
that data is returned in as close to real time as possible.

Intelligent query pushdown
Shifts the data processing to the data sources, meaning the
work is distributed to the system most adept at processing it.
It also potentially reduces the amount of data returned to the
federated system by applying query predicates at the source
prior to returning the data.

Ability to convert query code to machine code
Further improves query performance by translating code writ‐
ten by humans into a machine-optimized language.

Case Study
How do all these components work together to form a multiaccess,
high-volume, high-performance interface? Let’s take a look at an
example. China Mobile is a telemarketing business in Asia, provid‐
ing service for over 1.5 billion mobile service users in 2019. Within
the company is China Mobile Guangdong (GMCC), which services
over 100 million customers in the Guangdong province of China.
The large volume of customers combined with a wide variety of
diverse data sources meant that GMCC was struggling to derive
insights from terabyte levels of data.

GMCC needed this data to meet customer needs, assess network
performance, and optimize company performance; however, pulling
insights from the data proved extremely difficult since the data was
so large and so siloed. Query performance was slow, and the lack
of a universal query language meant business users had to rely on
the IT office to generate new reports and data sets. The result? The
IT office became overwhelmed by the high demand for data, and
vital reports were delayed from days to months. In short, GMCC
could not make real-time data-driven decisions due to the volume
and complexity of its data environment.

The company approached the issue by addressing portions of the
issue independently:

24 | Chapter 4: Requirements Summary

• First, it relied on Hadoop (HDFS) to store all the data. HDFS•
was able to adapt to the huge volume, holding over 8 TB of data;
however, it relies heavily on disc input and output, resulting in
increased latency and reduced query speed. HDFS is also batch
processing based, meaning ad hoc queries could not be run
easily.

• Redis was employed to improve speed by processing data in•
memory; however, as stated before, Redis limits capabilities to
simple queries, reducing its effectiveness.

• Oracle and DB2 were employed, but both rely heavily on the•
ETL process, which is extremely time consuming and resource
intensive. The two database structures are also limited to struc‐
tured data, meaning they couldn’t handle some of the unique
data values being pulled in by GMCC.

GMCC turned to RapidsDB to address its data challenges. Rap‐
idsDB was able to deal with many of the issues by utilizing its
in-memory federated query system. The system is built on a dis‐
tributed model, meaning multiple machines work in unison to pro‐
cess data and queries. This model not only improved performance,
but also provided redundancy while allowing for easy expansion.
The system also pulled all the varied data sources under a single
unified language, enabling users to access the data using a single
query language and login rather than multiple languages and logins.

This implementation provided a significant improvement. Query
processing times dropped from minutes to seconds. Additionally,
the software relied on a standard SQL language and passed creden‐
tial authorization to the sub-data sets. This meant the base applica‐
tion controlled access. In short, if the user successfully authenticated
to the universal database access platform and had access to the
underlying data set, they would be granted access without the need
for a separate credential.

This improved performance means GMCC can make queries of its
data and receive insights in much closer to real time. The federated
query system ensures that existing platforms and future platforms
can easily be added, combined, and queried. Also important is that
users can do ad hoc queries rather than rely on time-consuming
batch processing.

Case Study | 25

The benefits of a fast universal data access platform are multiple.
With the increased number of data sources, data varieties, and data
changes, the capability to provide connectivity, storage, and usability
at fast speeds is more valuable than ever. A distributed framework
combined with pluggable connectors ensures not only that current
data obstacles are overcome, but also that your company is prepared
and able to adapt to future data challenges.

26 | Chapter 4: Requirements Summary

About the Author
Christopher Gardner is the campus Tableau application adminis‐
trator at the University of Michigan, controlling security, updates,
and performance maintenance. He’s also part of a small team
responsible for developing and maintaining a suite of university-
level dashboards used by campus budget administrators, deans, and
university leadership. As part of his job, he leads a monthly daylong
Tableau introduction course at the university. Christopher holds a
degree in actuarial mathematics from the University of Michigan.

	Cover
	RapidsDB
	Copyright
	Table of Contents
	Chapter 1. Challenges of Universal Data Access
	What Is Universal Data
Access?
	Data Diversity
	Data Volume
	Speed of Analytic Operations

	Chapter 2. Building a Framework for Data Diversity and Universal Access
	Federated Query System
	Pluggable Data Connectors
	Support for Cloud, Hybrid Cloud, and On-Premises Deployments
	User-Defined Types and Functions

	Chapter 3. Meeting the Performance SLAs for Making Business-Critical Decisions
	Dynamic Clustering
	Dynamic Query Optimization
	Minimizing Data Movement Using Intelligent Query Pushdown
	Execution at Machine-Code Speed
	In-Memory Data Processing

	Chapter 4. Requirements Summary
	Case Study

	About the Author

